Pulsating fluid flow affects pre‐osteoblast behavior and osteogenic differentiation through production of soluble factors
نویسندگان
چکیده
منابع مشابه
mTORC1 Prevents Preosteoblast Differentiation through the Notch Signaling Pathway
The mechanistic target of rapamycin (mTOR) integrates both intracellular and extracellular signals to regulate cell growth and metabolism. However, the role of mTOR signaling in osteoblast differentiation and bone formation is undefined, and the underlying mechanisms have not been elucidated. Here, we report that activation of mTOR complex 1 (mTORC1) is required for preosteoblast proliferation;...
متن کاملCurcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway
Objective(s): The aim of this study was to investigate the effect of curcumin on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying potential mechanism.Materials and Methods: The tissue explant adherence method was used to isolate hPDLSCs. Flowcytometry, Alizarin Red staining and Oil Red ...
متن کاملTurbulent Pulsating Flow through Circular Ducts
In the present paper, a numerical method has been demonstrated which works on an overall NewtonRaphson type algorithm and is capable of solving the “inverse” problem for turbulent, fullydeveloped, pulsating pipe flows, where the mass flow rate, rather than the pressure gradient is prescribed as a periodic function of time. The momentum equation, governing the transient, fullydeveloped pulsating...
متن کاملMathematical modelling of Sisko fluid flow through a stenosed artery
In the present study, the nonlinear model of non-Newtonian blood flow in cosine-shape stenosed elastic artery is numerically examined. The model is carried out for axisymmetric, two-dimensional and fully developed blood flow. The vessel wall is assumed to be have time-dependent radius that is important factor for study of blood flow. The cosine-shape stenosis convert to rigid artery by using a ...
متن کاملControlling Osteogenic Differentiation through Nanoporous Alumina
Nanotopographical features are found to have significant effects on bone behavior. In the present study, nanoporous aluminas with different pore sizes (20, 100 and 200 nm in diameter), were evaluated for their osteoinductive and drug eluting properties. W20-17 marrow stromal cells were seeded on nanoporous alumina with and without the addition of BMP-2. Although cell proliferation was not affec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physiological Reports
سال: 2021
ISSN: 2051-817X,2051-817X
DOI: 10.14814/phy2.14917